Improvements on some partial trace inequalities for positive semidefinite block matrices

نویسندگان

چکیده

We study matrix inequalities involving partial traces for positive semidefinite block matrices. First of all, we present a new method to prove celebrated result Choi [Linear Algebra Appl. 516 (2017)]. Our also allows us generalization another Multilinear 66 (2018)]. Furthermore, shall give an improvement on recent Li, Liu and Huang [Operators Matrices 15 (2021)]. In addition, include with some majorization two by matrices, provide related the unitarily invariant norms as well singular values, which can be viewed slight extensions results Lin 459 (2014)] [Electronic J. Linear 31 (2016)].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

singular value inequalities for positive semidefinite matrices

in this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl‎. ‎308 (2000) 203-211] and [linear algebra appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Inequalities for Singular Values of Positive Semidefinite Block Matrices

In this paper, we first give a lower and upper bounds for singular values of a 2×2 positive semidefinite block matrices. Then, we give some weakly majorization inequalities of singular values positive semidefinite block matrices. Also, we present inequalities involving the direct sum and sum of positive semidefinite matrices.

متن کامل

Singular Value Inequalities for Positive Semidefinite Matrices

In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].

متن کامل

Trace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Positive Semidefinite Hermitian Matrices

Let A and B be n n positive semidefinite Hermitian matrices, let c and/ be real numbers, let o denote the Hadamard product of matrices, and let Ak denote any k )< k principal submatrix of A. The following trace and eigenvalue inequalities are shown: tr(AoB) <_tr(AoBa), c_<0or_> 1, tr(AoB)a_>tr(AaoBa), 0_a_ 1, A1/a(A o Ba) <_ Al/(Az o B), a <_ /,a O, Al/a[(Aa)k] <_ A1/[(A)k], a <_/,a/ 0. The equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2022

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2022.2121368