Improvements on some partial trace inequalities for positive semidefinite block matrices
نویسندگان
چکیده
We study matrix inequalities involving partial traces for positive semidefinite block matrices. First of all, we present a new method to prove celebrated result Choi [Linear Algebra Appl. 516 (2017)]. Our also allows us generalization another Multilinear 66 (2018)]. Furthermore, shall give an improvement on recent Li, Liu and Huang [Operators Matrices 15 (2021)]. In addition, include with some majorization two by matrices, provide related the unitarily invariant norms as well singular values, which can be viewed slight extensions results Lin 459 (2014)] [Electronic J. Linear 31 (2016)].
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملsingular value inequalities for positive semidefinite matrices
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
متن کاملInequalities for Singular Values of Positive Semidefinite Block Matrices
In this paper, we first give a lower and upper bounds for singular values of a 2×2 positive semidefinite block matrices. Then, we give some weakly majorization inequalities of singular values positive semidefinite block matrices. Also, we present inequalities involving the direct sum and sum of positive semidefinite matrices.
متن کاملSingular Value Inequalities for Positive Semidefinite Matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملTrace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Positive Semidefinite Hermitian Matrices
Let A and B be n n positive semidefinite Hermitian matrices, let c and/ be real numbers, let o denote the Hadamard product of matrices, and let Ak denote any k )< k principal submatrix of A. The following trace and eigenvalue inequalities are shown: tr(AoB) <_tr(AoBa), c_<0or_> 1, tr(AoB)a_>tr(AaoBa), 0_a_ 1, A1/a(A o Ba) <_ Al/(Az o B), a <_ /,a O, Al/a[(Aa)k] <_ A1/[(A)k], a <_/,a/ 0. The equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear & Multilinear Algebra
سال: 2022
ISSN: ['0308-1087', '1026-7573', '1563-5139']
DOI: https://doi.org/10.1080/03081087.2022.2121368